Crystallization of MgO during sintering of silicon nitride with magnesia and ceria

YANG HAITAO∗, GAO LING, YUAN RUNZHANG

State Key Lab for Hybrid Materials, Wuhan University of Technology, Wuhan 430070, People's Republic of China E-mail: sklwut@public.wh.hb.cn

YANG GUOTAO

Central South University of Technology, Changsha 410083, People's Republic of China

This paper deals with the crystallization of MgO during sintering of $Si₃N₄$ -MgO-CeO₂ ceramics. At the initial stage of sintering (1450–1550 \degree C), MgO-CeO₂ reacts with free silica to form sufficient liquid phase to densify $Si₃N₄$ into nearly full density ceramics; at final stage (1600–1800 \degree C), the crystallization of MgO reduces the amount of glassy phase which is harmful to the high-temperature properties. $MgO-CeO₂$ is found to be an excellent sintering aid for $Si₃N₄$. \odot 1999 Kluwer Academic Publishers

1. Introduction

Silicon nitride ceramic materials show great potential for wide applications. Sintering is a very cost-effective way to produce silicon nitride ceramics. However, it is difficult to densify pure silicon nitride due to its covalent nature of bonding. Metal oxides such as MgO [1, 2], Al_2O_3 [3, 4], and rare-earth oxides [5–7] have been found to be effective sintering aids for $Si₃N₄$. Silicon nitride is also limited in its high-temperature properties due to glassy phases formed at the grain boundaries as a result of processing with sintering aids. Two main ways have been studied to address this problem: (1) the crystallization of the glassy phase by postsintering heat treatment [8]; (2) the formation of a solid solution, i.e., sialon [9]. However, the stresses resulting from the postsintering heat treatment process decrease the room-temperature as well as the high-temperature strength and monophase $Si₃N₄$ solid solution ceramic materials exhibit a low fracture toughness. This paper discusses the crystallization of MgO during the sintering of Si₃N₄-MgO-CeO₂ ceramics. The present work shows that $MgO-CeO₂$ is an excellent sintering aid, which leads to high strength and a less glassy phase for the sintered $Si₃N₄$ -MgO-CeO₂ ceramics.

2. Experimental

Composition of (90 wt % $Si_3N_4^{\dagger} + 5$ wt % $MgO^{\dagger} + 5$ wt % $CeO₂[§]$) was chosen for this study. Powder mixtures were ball milled in anhydrous alcohol for 24 hours with WC-6%Co cemented carbide medium and container. After they were milled, the powder mixtures were dried, shifted, dry-pressed into bars in a steel die

at 120 MPa. The compact samples were embedded in a $Si₃N₄ + 50$ wt %BN mixed-powder-bed in a molybdenum crucible. Pressureless sintering was conducted in a graphite vacuum furnace backfilled with 1 atm nitrogen gas at 1450, 1500, 1600 and 1800 ◦C for 1 hour, respectively.

Phase identification was made by X-ray diffraction using CuK_{α} radiation. TEM specimens were prepared in the usual way by cutting, grinding and finally ion beam thinning. A H-800 transmission electron microscope fitted with an EDAX was used for TEM work.

3. Results and discussion

Fig. 1 shows the XRD pattern of the green compact of $Si₃N₄$ contained 5 wt %MgO + 5 wt %CeO₂. Before sintering, α -Si₃N₄, β -Si₃N₄, MgO, CeO₂ and WC existed in the green compact. Chemical analysis indicated that about 4 wt %WC was introduced by the milling process.

Fig. 2 shows the XRD pattern of a sintered body heated at 1800 °C for 60 min. Most of the α -Si₃N₄ has transformed into β -Si₃N₄, while CeO₂ has disappeared, and MgO remains.

The conclusion seems obvious that $CeO₂$ reacted with free silica to form a liquid phase at 1800° C and was then transformed into a glassy phase after cooling down. MgO did not take part in the reaction.

According to $MgO-SiO₂$ phase diagram, there is an eutectic point at 1543 ◦C. So it seems impossible that MgO did not react with $SiO₂$ at 1800 °C. In order to have a better understanding of the unclear points involved, a series of experiments were designed. The sintering

[∗] Author to whom all correspondence should be addressed.

[†] Purchased from Zhuzhou Cemented Carbide Works, Zhuzhou 412000, People's Republic of China.

[‡] Purchased from Tianjing Chemicals, Tianjing 130020, People's Republic of China.

[§]Purchased from Hunan Rare Earth Institute, Changsha 41000, People's Republic of China.

Figure 1 XRD pattern of the $Si₃N₄ + 5%MgO + 5%CeO₂$ green compact: (o) α-Si₃N₄, (Δ) β-Si₃N₄, (\bullet) MgO, (**Δ**) CeO₂, (□) WC.

Figure 2 XRD pattern of the $Si₃N₄ + 5%MgO + 5%CeO₂$ ceramics sintered at 1800 °C for 60 min: (\circ) α -Si₃N₄, (\triangle) β -Si₃N₄, (\bullet) MgO, (\triangle) CeO₂, (\square) WC.

temperatures were 1450, 1500, 1550, and 1600 ◦C, respectively.

Fig. 3 represents the XRD pattern for a specimen sintered at 1450 °C for 60 min. α -Si₃N₄, β -Si₃N₄ and WC peaks can be identified, but neither MgO nor $CeO₂$ is found.

Fig. 4 shows the XRD pattern for a specimen sintered at 1500 \degree C for 60 min. It is similar to Fig. 3 with no sign of MgO and $CeO₂$.

The XRD results for the specimens sintered at 1450– 1500 \degree C suggest that both MgO and CeO₂ have reacted with free silica at $1450-1500$ °C to form a liquid phase which was subsequently transformed into a glassy phase. This explains why they cannot be identified by X-ray diffraction.

In fact, the volume shrinkage for the specimen sintered at 1450 ◦C was about 36%, which indicated that a lot of liquid phase existed [10].

Fig. 5 represents the XRD pattern for a specimen sintered at 1550 °C. CeO₂ is absent. But MgO, which was absent formerly, is found again.

Figure 3 XRD pattern of the $Si₃N₄ + 5%MgO + 5%CeO₂$ ceramics sintered at 1450 °C for 60 min: (\circ) α -Si₃N₄, (\triangle) β -Si₃N₄, (\bullet) MgO, (\triangle) CeO₂, (\square) WC.

Figure 4 XRD pattern of the $Si₃N₄ + 5%MgO + 5%CeO₂$ ceramics sintered at 1500 °C for 60 min: (\circ) α -Si₃N₄, (\triangle) β -Si₃N₄, (\bullet) MgO, (\triangle) CeO₂, (\square) WC.

Figure 5 XRD pattern of the $Si₃N₄ + 5%MgO + 5%CeO₂$ ceramics sintered at 1550 °C for 60 min: (\circ) α -Si₃N₄, (\triangle) β -Si₃N₄, (\bullet) MgO, (\triangle) CeO₂, (\square) WC.

Figure 6 XRD pattern of the $Si₃N₄ + 5%MgO + 5%CeO₂$ ceramics sintered at 1600 °C for 60 min: (\circ) α -Si₃N₄, (\triangle) β -Si₃N₄, (\bullet) MgO, (\triangle) CeO₂, (\square) WC.

Fig. 6 shows the XRD pattern for a specimen sintered at 1600 \degree C. It is similar to Fig. 5. There are no trances of $CeO₂$ and MgO is found.

The final interpretation could be given according to the below analysis.

For the $Si₃N₄$ -MgO-CeO₂ system, MgO-CeO₂ reacts with free silica to form a liquid phase at a sintering temperature of 1450–1500 ◦C and is then transformed into a glassy phase after cooling down; above 1550 ◦C, MgO crystallizes during sintering. $CeO₂$ is in a glassy phase which hardly contains any MgO.

This particular phenomenon is of great value for the sintering of $Si₃N₄$. At the initial stage of sintering $(1450-1550 \degree C)$, MgO-CeO₂ reacts with free silica to form sufficient liquid phase to densify $Si₃N₄$ into nearly full density ceramics (the pressureless sintered $Si₃N₄$ - $MgO-CeO₂$ ceramics in the present study achieved a relative density of 98.5% and a strength of 950 MPa) [10]; at final stage (1600–1800 °C), the crystallization of MgO reduces the amount of glassy phase which is harmful to the high-temperature properties. The sintered $Si₃N₄$ -MgO-CeO₂ ceramics contain little refractory Ce-rich silicate glassy phase. Thus, MgO- $CeO₂$ can be considered as an excellent sintering aid for Si_3N_4 .

In fact, M. J. Hoffmann has found that the crystallization of additives can occur during sintering, especially for compositions directly on a tie line between a secondary phase and $Si₃N₄$. In this case, the volume fraction of the liquid phase is strongly reduced and complete densification is impossible [11].

Fig. 7 shows a typical microstructure of the silicon nitride sintered with $5\%MgO + 5\%CeO₂$ at $1800 °C$ for 60 min. The glassy phase remains at multigrain junctions as well as $\beta-\beta$ Si₃N₄ grain boundaries. The glassy phase can be confirmed directly by its electron diffraction which appears to be an circle because of the absence of the Bragg diffraction. The result of the EDAX analysis of a glassy phase (Fig. 8) shows that Si, Ce are rich in the glassy phase but Mg is very poor (Mg: 0.64 at %, Si: 65.34 at %, Ce: 9.23 at %, Cu: 21.31

Figure 7 Typical microstructure of the $Si₃N₄ + 5%MgO + 5%CeO₂$ ceramics sintered at 1800 ◦C for 60 min.

Figure 8 EDAX analysis on a glassy phase in $Si₃N₄ + 5%MgO + 5%$ CeO₂ ceramics sintered at 1800 \degree C for 60 min.

at %, W: 3.48 at %, Cu was introduced by specimen holder). This reveals that after sintering at 1800 ◦C, the main composition of the glassy phase in the sintered $Si₃N₄ + MgO + CeO₂$ ceramics is cerium silicate and hardly contains any MgO. This result is consistent with X-ray diffraction patterns.

4. Conclusions

(a) For the $Si₃N₄$ -MgO-CeO₂ system, the MgO-CeO₂ seems to react with free silica to form a liquid phase at the sintering temperature of $1450-1550$ °C and is then transformed into a glassy phase after cooling down; above 1550 ◦C, MgO crystallizes during sintering. Only $CeO₂$ is found in the glassy phase which hardly contains any MgO.

(b) $MgO-CeO₂$ is found to be an excellent sintering aid for $Si₃N₄$. At the initial stage of sintering (1450– $1550\textdegree C$), MgO-CeO₂ reacts with free silica to form sufficient liquid phase to densify $Si₃N₄$ into nearly full density ceramics; at final stage $(1600-1800 °C)$, the crystallization of MgO reduces the amount of glassy phase which is harmful to the high-temperature properties. The sintered $Si₃N₄$ -MgO-CeO₂ ceramics contain little refractory Ce-rich silicate glassy phase.

Acknowledgements

This work was supported by China National Postdoctoral Foundation.

References

- 1. G. ZIEGLER, J. HEINRICH and G. WOTTING, *J. Mater. Sci.* **22** (1987) 3041.
- 2. A. J. PYZIK and D. ^F . CARROLL, *Annu. Rev. Mater. Sci.* **24** (1994) 189.
- 3. Y. GOTO and G. THOMAS , *J. Mater. Sci.* **30** (1995) 2194.
- 4. S. Y. YOON, T. AKATSU and E. UASUDA, *J. Mater. Res.* **11** (1996) 120.
- 5. J. T. SMITH and C. L. QUAKENBUSH, *Amer. Ceram. Soc. Bull.* **59** (1980) 529.
- 6. C. M. WANG, X. PAN and M. J. HOFFMANN, *J. Amer. Ceram. Soc.* **79** (1996) 788.
- 7. W. A. SANDERS and D. M. MIESKOWSKI, *ibid.* **64** (1985) 304.
- 8. M. K. CINIBULK, G. THOMAS and ^S . M. JOHNSON, *ibid.* **73** (1990) 1606.
- 9. M. B. TRIGY and K. H. JACK, *J. Mater. Soc. Lett.* **6** (1987) 407.
- 10. H. T. YANG, G. T. YANG and R. Z. YUAN, *J. Wuhan University of Technology* **11** (1996) 1.
- 11. M. J. HOFFMANN, *MRS Bull.* **2** (1995) 28.

Received 28 January 1998 and accepted 22 January 1999